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Quantum effects are considered in the dynamics of a system of N paramagnetic atoms in a resonant cavity interacting with a
constant magnetic field and with a resonant external magnetic field. In the semi-classical limit (classical radiation field in the
cavity) this resonantly driven system shows developed (global) chaos. Expectation-value dynamics shows however that quantum
corrections cause a departure from the semi-classical chaotic dynamics on a time-scale 7,~1n N and that quantum correlation

functions grow exponentially in time. The possibility of experimentally observing this effect is discussed.

1. Introduction

A fundamental problem in quantum chaos of
Hamiltonian systems is to determine how signifi-
cantly quantum effects cause a system’s dynamics to
depart from its corresponding classical chaotic mo-
tion, starting from the same initial conditions and
for parameter values in the quasiclassical region. This
problem is fundamental in quantum mechanics [1}]
but, for quantum rnonintegrable systems, the meth-
ods needed to deal with it are still being developed.
Investigations of this problem have been carried out
during the last few years on rather simple models [2-
10] with one-and-a-half degrees of freedom. These
investigations have shown that when “developed”
dynamical chaos appears in the classical limit the
quasiclassical approximation is violated in loga-
rithmically small times, 7,~1n x (where kx=const/#
1s the quasiclassical parameter). This means that for
early times (7<1;) quantum dynamics only differs
slightly from its corresponding classical motion, but
at later times (7> 1) quantum effects become sig-
nificant. So, at times of order 7, the character of the
dynamics of the quantum system begins making a

qualitative departure from its corresponding classi-
cal chaotic motion. We call time 7 at which this hap-
pens the classical/quantum crossover time scale for
the system.

Experiments carried out recently with Rydberg
states of hydrogen atoms in microwave fields inves-
tigate processes such as electron diffusion up to the
ionisation threshold [11-13]. However, even for
initial populations of electrons prepared with fairly
large principal quantum number, n~ 50-100, such
systems cannot be considered quasiclassical enough
to observe the classical/quantum crossover time
scale, 7,; since in this case the time scale 175 is too small
for current experimental techniques to measure. On
the other hand, most systems in which classical non-
dissipative chaos may be observed are so macro-
scopic that their time scale 1, exceeds all character-
istic relaxation times. Consequently, the classical/
quantum crossover time at which the transition from
classical nondissipative chaotic motion to quantum
dynamics occurs cannot be observed in these sys-
tems either. This problem is related to the general
problem of validity of quantum mechanics for the
description of big “classical” systems. It is known that
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usually the time 1, when quantum corrections finally
must be taken into account to describe the dynamics
of a big “classical” system significantly exceeds any
relaxation times for the system, and sometimes even
exceeds the age of the universe. Thus, between these
two extremes the problem arises, to identify systems
for which the transition from classical Hamiltonian
chaos to essentially quantum dynamics may be ex-
perimentally observed.

In this paper we consider a system whose classi-
cal/quantum transition may turn out to be experi-
mentally observable. The system consists of NV para-
magnetic spins (s=1) placed in a resonator with
large quality factor, Q. These spins interact with an
external spatially homogeneous magnetic field, B,.
We assume there is no direct interaction between the
spins. Their interaction is solely through a single
electromagnetic eigenmode of the resonator, and this
mode is chosen to be in resonance with the fre-
quency w=gugBy/f of spin precession in the exter-
nal magnetic field By. In this part of the problem for-
mulation, our system is analogous to the quantum
Dicke model [14-16], well known in nonlinear op-
tics, which describes cooperative effects in an en-
semble of N two-level atoms in a single-mode reso-
nant cavity. We then add to our spin system a
periodically modulated magnetic field, perpendicu-
lar to By, with spatially uniform amplitude b, and
with modulation frequency £ slightly different from
the eigenmode frequency (or the spin precession fre-
quency @). This field acts on the spins as a nearly-
resonant periodic external force. We show that three
characteristic frequencies appear in the slow dynam-
ics of this system: (1) the cooperative Dicke fre-
quency . which describes slow self-consistent en-
ergy exchange between the spins and the resonator
eigenmode; (2) the Rabi frequency wg which is pro-
portional to the amplitude b, of the external mag-
netic field and describes slow nutation of an indi-
vidual spin in resonance with the periodically varying
external magnetic field, and (3) the difference
A=w—L between the frequency of spin precession
in the magnetic field B, and the frequency of the ex-
ternal coherent magnetic field. In the semi-classical
approximation (when the radiation field in the res-
onator is considered as a classical sub-system) this
system shows *“developed” (global) chaos under
conditions that may be expressed roughly as follows:
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w.~ wr ~ |4|. This condition means that in slow dy-
namics the different nonlinear resonances strongly
interact. We take into account quantum effects by
treating the eigenmode of the resonator as a quan-
tum linear oscillator. In this quantum system, the ac-
tion of the self-consistent field (eigenmode) is big:
Iga~AN>> % and the system is in the “deep” quasi-
classical region.

The main result of the paper is the following: for
this spin system in the parameter region where de-
veloped chaos occurs in the semi-classical approxi-
mation, quantum effects lead to violation of the semi-
classical description on the time scale 7,~InN.
Moreover, in this case quantum correlation func-
tions grow exponentially during the time before 7,
at a rate that may be experimentally measurable. The
paper is organized as follows. Section 2 describes the
paramagnetic spin model. In section 3 the Hamil-
tonian for the slow dynamics of the spin model is
derived. Section 4 presents an exact c-number equa-
tion for the slow dynamics of quantum expectation
values in a coherent-state representation of this
model. Section 5 discusses the semi-classical ap-
proximation and gives some new results on the semi-
classical chaos shown by this model system. Section
6 shows numerical simulations of the effects of quan-
tum corrections on semi-classical chaotic dynamics
in this model system obtained using the c-number
equation presented in section 4. In the conclusion,
we discuss the experimental measurability of these
effects.

2. Description of the paramagnetic spin model

We consider fixed in a material sample N para-
magnetic atoms, each with spin one-half, placed in
a cavity resonator and interacting self-consistently
via a single resonator eigenmode. These spins also
interact with an externally imposed, homogeneous,
magnetic field with two orthogonal components, B,
and b(¢). The first of these, B,, is constant and has
its spin precession frequency tuned to the frequency
of the resonator eigenmode. The other homogeneous
external magnetic field component, b(¢), is modu-
lated periodically in time, with modulation fre-
quency slightly detuned from that of the resonator
eigenmode (see fig. 1).
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Fig. 1. Rectangular resonator with linear dimensions L,, L,, L,
and a paramagnetic sample with dimensions /.« L,, [, < L,,
I,=L,. A constant magnetic field B, is directed along the z axis; a
periodic magnetic field b, cos(£2t) is linearly polarized along the
x axis. The curves show the distribution of magnetic field in a
chosen resonator eigenmode (this field is homogeneous in the z
direction).

We assume we can excite in the cavity resonator
a single eigenmode, characterized by its eigenfre-
quency w=2nfand by the geometry of its electric and
magnetic field lines. Thus, the amplitudes of all other
modes are taken to be negligibly small in comparison
with the amplitude of the excited mode. The fre-
quency of magnetic resonance is determined by the
constant external magnetic field, B,, and may be
tuned to match the frequency of the excited eigen-
mode. For example, in electron paramagnetic reso-
nance (PMR) assuming By=1 kOe and g=2 gives

f=5%~3GHz.

The amplitude of the time-periodic external mag-
netic field, b(¢), may be varied over a wide range:
typical values are by~ 0.01-10? Oe. A typical cavity
quality factor is O~ 104, or even higher [17]. (Here
Q=w/2y and y is the damping coefficient of our ei-
genmode.) The dynamics may be taken to be non-
dissipative over times ¢ less than order 10%/w. The
feasibility of making experimental measurements of
effects connected with time scale 7; less than this will
be discussed below.

The eigenmodes E,(r) in the ideal cavity reso-
nator are described by the Helmholtz equation,

2
AE,,+<%) E,=0, V-E,=0, (2.1)
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with tangential boundary conditions E;Xn=0
(where n is a normal vector to the resonator sur-
face). The magnetic field B,(r) also satisfies eqs.
(2.1) but with normal boundary conditions, B;-n=0.
The eigenfrequencies depend on the shape of the res-
onator, and for a rectangular parallelepiped with sides
L, L, L, one has

2
(%A) =k2+k2+k2, (2.2)

where

kx,,v,z = nx,y,z/ Lx,.v,z s

and n,,,=0, 1, ...

For quantum considerations the electromagnetic
field in the resonator may be represented in the well-
known form

E(r,t)= ;ﬁk(t)Ek(’) ,
B(r, t)=— ; WxGa () Bi(r) , (2.3)

where f;(t) and 4,(¢) are impulse and coordinate
operators, with commutation relations [dx, fx]=
ihd 4. The operators g and p, are expressible in
terms of creation and annihilation operators 4+ and

~

4, as

PN
@k=(2_wk> (@i +du),

ﬁk=i(%hwk)l/2(dk —d), (2.4)
with commutator [dy, 43 ] =d . Hence, we arrive
at the standard formula for the Hamiltonian of an
electromagnetic field in a resonator,
3|
= — B2+E*)dV
o= g | (B+E?)
= Y hox(di dxti). (2.5)
k

The interaction of N spins in a sample placed in this
resonator with a magnetic field is governed by the
Hamiltonian

N
ﬁim=g.uB[B(r05t)+Bex]' ZIS (26)
j=

In (2.6) B., is an external magnetic field that is as-
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sumed to be homogeneous over the sample’s size and
could depend on time; $; are spin operators; N is the
number of spins in the example. We have substituted
B(ro, t) for B(r, t) in (2.6), with

B(ry,t)=— Ek: (3hwi) ' 2Bi(ro) (A7 +4dx),  (2.7)

since the size of the sample being placed into the res-
onator near location r=r, is supposed to be small in
comparison with the characteristic inhomogeneity of
the chosen resonator eigenmode. The magnetic field
in such a sample may be regarded as homogeneous.
In what follows, we shall limit ourselves to the single-
mode approximation and consider the following ei-
genmode of the resonator,

E,(x,y)=+/16w/Vsin(k.x) sin(k,y) ,
E,=E, =0,

B.(x,y)=~ %« /16m/Vsin(k.x) cos(k,y) ,

B,(x,y)= %Jl&t/Vcos(kxx) sin(k,y) ,

B,=0, (2.8)
where

kx,y = R/Lx,y , V= LxLyLz ’

wr=c?(k2+k2). (2.9)

The normalization of the mode is chosen as

IEZ dV= J-Bde=41|: .

According to (2.8) the electromagnetic field is ho-
mogeneous along the z axis. Thus, it is sufficient to
assume that the dimensions of the sample along the
x and y axes are small,

L<L,, [,<L,. (2.10)

For example, we could satisfy these conditions by
placing our sample in the resonator near x=1}L,,
y=0. This corresponds to putting the sample at the
location of the maximum of the magnetic field, where
it is polarized along the x axis (see fig. 1). Next, we
assume that the spatially homogeneous magnetic field
B,, in (2.6) includes a constant component, By, di-
rected along the z axis, as well as a time-periodic
component, directed along the x axis and given by
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b(t)=bycos(L2t) . (2.11)

Thus, b, and Q denote the amplitude and frequency
of the time-periodic component of the homogeneous
external magnetic field. We also assume that the fol-
lowing frequency conditions are satisfied,

y<lo-2|<xw, Q. (2.12)

We shall discuss experimental parameters corre-
sponding to this condition in the conclusion.

Now writing (2.5) and (2.6) with only one mode
(2.8) vyields the following Hamiltonian for our
system,

N
H=hwi*a+gus B, -21 Sz
Jj=

2nhw X

+ 8ty S (§F +87)(a++4)

w V
N
+1gupbocos(Q) Y (S +S81). (2.13)
j=1
Below, we show that the strength of interaction be-

tween the spins and the resonator mode is deter-
mined by the real-valued coupling constant

_ [2mc*kGuzg’N
Ag=  [TEHBE T

The quantum effects in which we are interested de-
pend significantly on the number of spins, N. Thus,
it is convenient to introduce experimentally con-
trollable parameters that allow us to vary the num-
ber of spins, N, at a fixed value of the coupling, Ao.
For this purpose, we choose the linear dimensions of
the sample to satisfy

(2.14)

l,<Ly,, L=L,. (2.15)

In this case, the field B.(x, y) in (2.8) may be con-
sidered as homogeneous over the size of the sample.
The number of spins in the sample is: N=pyl./,/,
(where p, is the density of spins); so the constant A,
does not depend on L., since by (2.14)

2 25.2,,2 2[[
Ao= N RoLL,

At the same time, N is proportional to L,, so N may
be varied at constant 4,. Estimates of these param-

(2.16)
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eters will be discussed in the conclusion.

3. Slow dynamics and time-independent
Hamiltonian

In this section we simplify Hamiltonian (2.13).
For this, we use the interaction representation
¥,..=exp(ifot/%) ¥ with Hamiltonian operator H,
given by

N
Hy=hwa*a+gupB, .21 Sz, (3.1)
Jj=

and introduce *collective operators™
A=a/ /N, A*=a*/ N,

1 N
Stz — Y §F2, (3.2)
N &
These collective operators satisfy the following re-
normalized commutation relations,

1

[44*)=, 1§58 =1 587,

1

N’
)

[$+,8 ]=X,S’, (3.3)

where §*=5*+i$”. In the interaction representa-
tion, using (2.13) leads to the following Hamilto-
nian for the slow dynamics of the system (dropping
nonresonant terms),

Ao () =N[(AS* +A+§-)

+A(eFS-+e—i¥5+)],

a'pim(‘c)
T

i =20 = A (1) Fons(7) (3.4)

In (3.4) a slow dimensionless time, 7=w,t, and a
dimensionless constant of interaction of paramag-

netic atoms with the external field have been intro-
duced, where

21— &b

=4tho, w.=wAy, A=(R-w)/w.. (3.5)

The wave function %, (7) describes the slow dy-
namics of our system in the interaction representa-
tion. In deriving Hamiltonian (3.4) we have as-
sumed that 4, < 1, which allows the dynamics of the
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system to be separated into slow and fast motion.
When the condition 4, << 1 is satisfied, one may ne-
glect the fast terms in the Hamiltonian
(~exp( *2iwt)) and use the rotating wave approx-
imation (RWA). So, in this case we have: w./
w~Ay<x 1. The slow frequency @, introduced in
(3.5) plays here the role of a “cooperative fre-
quency”, that characterises the time scale for energy
exchange between paramagnetic atoms and the self-
consistent field in the resonator.
The canonical change of variables

fit=e-d§t | 47=87, é=ei¥4, (3.6)
makes the Hamiltonian time-independent (cf. eq.
(3.4)),
H=N@H*+¢*hH~+A4* +2h~

—Ae*é—An7) . (3.7)

The equations resulting from this Hamiltonian pos-
sess in general only two integrals of motion: A in
(3.7) and $?, given by

S2=(A)2+ (A A~ +A~A*) . (3.8)
However, when 4=0, a third integral of motion exists,
W=¢+é+47, (3.9)

and the problem becomes completely integrable.

In fact, the problem formulated so far is identical
to the well-known quantum Dicke model (QDM)
(see, for example, reviews [16,17] and references
therein). QDM is a completely integrable system, and
more than twenty years ago numerical results for this
model were obtained [15] that foreshadow how the
time scale 7;~ In N for violation of the semi-classical
approximation arises in the system governed by
Hamiltonian (3.4).

The authors of ref. [15] numerically compute the
quantum dynamics and corresponding classical mo-
tion in QDM, starting from an initial “super ra-
diant” state, and from an initially completely in-
verted state (CIS). For CIS, they find that the
quantum slow dynamics and its corresponding clas-
sical limit first begin to differ on a time scale 7;,~In N.
The conclusion in the present paper is the following:
if in the semi-classical approximation, there exists
developed chaos (global instability over most of
phase space), then the time scale 1, ~In N will be the
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characteristic time, after which significant differ-
ences may arise between the classical and quantum
dynamics. Roughly speaking, one can say that the
logarithm appears in 7, because of local exponential
instability of classical trajectories in phase space, and
N appears because N is the only “quantum” param-
eter appearing in Hamiltonian (3.4) and commu-
tation relations (3.3).

4. Exact c-number equations for quantum
expectation values

In this section, we use a method suggested in refs.
[18-20] for deriving closed c-number PDEs that
govern the dynamics of quantum expectation values
in boson and spin coherent states [21] at 7=0,

[z> =exp(NzA* —Nz*4)|0> , (4.1)
where
Alzy=z|z), (4.2)

and the average number of photons in the resonator
mode at 1=0 is

n(0)=(z|4*a|z>=N{z|A*A|z)

=N|z|2. (4.3)
We also introduce spin coherent states [22] at 7=0,
18> =(1+¢1?) ~exp(&T*)1J, =T, (4.4)
where

N
j=j§lsj=NS',

JHNI, My =J(J+1)|J, M>
J=0,4, .., iN,

(M=—J,..,J),
|z], 1§ [0, c0) . (4.5)

Now, the time-dependent expectation value at time
7 of an arbitrary Heisenberg operator f( 7) is given by

D =<&2If(0)12,8 (4.6)

where |z, £> =|z) | £). Using the method discussed
in refs. [18,19] (see also ref. [20]) gives the fol-
lowing equation for expectation value f(7) in (4.6),

6f(r)

=Hf(r), f0)=flz,z%&¢&), (4.7)

PHYSICS LETTERS A

18 October 1993

where the differential operator ¥ separates addi-
tively into its classical and quantum contributions,

a1
H=H+ Nf (4.8)
with
. =i[—J .9 O Y L

o dz* ac* ER

2 1 (.8 0
+W1+|5|2(¢ ﬁ‘éa_z)
*i a »* : ] a
+(Z 3 ¢ ac) ( & c‘zé ac*)

a9 )
”(aé* ~ 3 g 5 ¢ Zac-)] (4.9)

and

a 2
2 w2 l
(5 370 =% az*ag*) : (4.10)
The semi-classical approximation corresponds to the
following limit,

Nooo, J-ooo, og=2J/N-const. (4.11)

5. Classical limit

In the classical limit we have from (4.7) and (4.8)
for f(1)

LD _safto) (5.1)

Since the operator %, in (4.9) involves only first-
order derivatives, the classical solution may be ob-
tained by the method of characteristics. Using the
explicit form of the operator J in (4.9) leads to
characteristic equations,

dz .- i _da 2J

&= e TN

dC 2 ia g sqg2
=idE—iz+iz*E2—il+1AE2. (5.2)

The solutions of egs. (5.2) determine the time-
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dependence of any semi-classical function, for
example

o aE(1)
SO
S*(1) = o(1-18(1) 1) A(t)=z(1) . (5.3)

201+ 1) 12’

Figure 2 shows the Poincaré map of a semi-classical
trajectory obtained from (5.2) and displayed on the
plane x=Re(z), y=Im(z) at the moments when the
trajectory crosses the plane Re &(7) =0. We note also
that the semi-classical dynamics can be described by
the Hamiltonian

Hy=4(q*+p*—x*-y?)
+2(0—q*—p*)2(xq—yp+2q)
=E, (5.4)

where the following canonical variables are intro-
duced (with 6=2J/N=const),

r= NZAH

z=x+iy, (= —m===—=— =q+ip (5.5)
&JT+1¢2 ’
LS I RS T T T
L SR 1k a
- 0F é.._._._.__....,.-..;} 4 >~ 0oF "" ST e o
1_4I|.\."-'l...141 E -1-E ) e 1 . L
-1 0 | 1 0 1
X X
AN USRS N T T T3
1F ... 1
> 0r
-1
1k
> 0F
-1

Fig. 2. The Poincaré map of a semi-classical trajectory on the plane
(x,y) (6=1, A=1). Integrable cases (A=0): (a) separatrix with
E=0, W=0; (b) E=0, W=0.1; (c) E=0, W=0.4. Nonintegra-
ble cases (A1#0): (d) A=10-3, E=0; (¢) 1=0.1,E=0; (f) i=2,
E=0.

302

PHYSICS LETTERS A

18 October 1993

with canonically conjugated pairs (x, y) and (g, p),
and rescaled time t’'=271.

As we already mentioned, the case =0 is com-
pletely integrable, and the third integral has the form

W=(W>=x2+y?—q>—p?. (5.6)

Curve (a) in fig. 2 corresponds to the separatrix
(E=0, W=0), given on the plane (x, y) as

x*+y*=0, y#0 (i=0),

xe[—y/0,/o], y=0. (5.7)

Curves (b) and (c) in fig. 2 correspond to the in-
tegrable case, but with W#0. Curves (d), (e), (f)
show the transition to developed (global) chaos, as
the dimensionless coupling constant A increases. Our
numerical calculations show that a qualitative cri-
terion for developed semi-classical chaos to occur in
the system may be expressed as

FSy ' (5.8)
or, in dimensional form,
w.~wr~ 4],

where w.=wd, is the cooperative frequency;
wr=gusbo/2% is the Rabi frequency and 4=Q—w
is the detuning.

The semi-classical version of model (3.4) is stud-
ied in refs. [23-25], in connection with a problem
in nonlinear optics that is mathematically identical
to the problem considered in this paper. In ref. [23]
global semi-classical chaos for this problem is inves-
tigated numerically. In ref. [24,25] exact results are
derived for the case of weak (homoclinic) chaos for
A< 1 in the semi-classical case. Figure 3 shows time
series for the case of developed semi-classical chaos.
These numerical calculations show that the dynam-
ics in this case is locally unstable. Thus, one could
expect considerable influence of quantum correc-
tions on this semi-classical dynamics. We turn to this
issue in the next section.

6. The influence of quantum corrections on chaotic
semi-classical motion

The quantum correlation function for two arbi-
trary operators f(7) and g(z) is defined to be
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a Using the correlation functions (6.1) and the Hei-
senberg equations for the operators: é*, ¢, #% #f¥,
6 i j i~ gives a set of exact c-number equations for their
expectation values, namely,
~ ..-._._M_.Z.ZZi
< o r S . ¢=ide—in=, H~=idn—+2iin*+2in7c+ _]\—IP"""
tn
V u n*=ictn~ —ion* +idn~ —idn*
i
-6 R ) N 1 _
0 10 20 ” o + N(P‘+’"_ c.c.). (6.4)

-

Re[s(7)exp(—iB(7))}
»

Fig. 3. Chaotic dynamics in the semi-classical approximation: (a)
time-dependence S*(t); (b) time-dependence Re[z(T1)
xexp(—idr)}; d=1, o=1, i=2, z(0)=~(0.65; -0.34),
E0) = (0; —1.75).

P = <& ZRDED) 2 &
—{&2If(1) |2, €9 <& z18(T) |2, &) . (6.1)

To derive the quantum correlation function dynam-
ics for Py.(7), we note that all three terms in (6.1)
satisfy eq. (4.7). Taking this into account gives an
exact equation for Pr,(7),

0P _ 4 - ~2<a_f£ Qa_f)
ar =P =1 g e ge g% g
..,{0fdg dgad |
2l VL ~©S o v —_
+ig (aza.f+ x5 Hobre, (6.2)

where the operators J#; and 51{1 are given in (4.9)
and (4.10), and we denote

f=EzIf(D)2, &), g=<(&zIg(n) |2, &y . (6.3)

In (6.4) ¢*, ¢, n% n*, n~ are c-number functions de-
fined according to (6.3). Equations (6.2) and (6.4)
form a closed set of c-number equations which de-
scribes the quantum dynamics of expectation values
and quantum correlation functions.

It was already mentioned above that the only
quantum parameter appearing in our system is €=
1/N. The physical meaning of this parameter is rather
simple. Since Hamiltonian (3.4) (or (3.7)) is ex-
pressed in collective variables, the characteristic ac-
tion in the system, /, is proportional to the number
of atoms N and the quasiclassical parameter is of the
order k=I/fi~N. In this connection, we note that
the problem considered here is directly related to the
well known 1/N expansion (see, for example, review
[26]).

It is clear from (6.1) that quantum correlations
may be significant for small enough N. Here we are
mainly interested in the case that N is large enough
that one may expect (at least for finite times 7<17;)
semi-classical chaotic dynamics to appear. In this
case, numerical investigation of egs. (6.2) and (6.4)
may be accomplished by using a rather simple
scheme, connected with the 1/N expansion. Not un-
expectedly, this method usually leads to secular
growth connected with the presence of small param-
eters multiplying the highest-derivative terms in
(6.2). We study numerically the secular effect of
these quantum corrections on the semi-classical so-
lution over finite times. The accuracy of this ap-
proach can be checked by verifying conservation of
the quantum integrals of motion, <H>, (52>, and
{W>, when A=0. In this approach, the first step in
constructing a solution for N>> 1 consists of neglect-
ing in (6.4) all quantum correlations and construct-
ing a semi-classical solution (as in section 5). Then,
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substituting this solution instead of functions f and
ginto (6.2) and neglecting the last term allows us to
calculate approximate quantum correlation func-
tions, P, (). The last step in constructing an ap-
proximate quantum solution consists of calculating
quantum expectation values in (6.4), taking into ac-
count quantum correlation functions. Numerical re-
sults obtained using this scheme are presented in figs.
4-7. In fig. 4 the characteristic dependence of the
time scale 75 for departure from the semi-classical
solution because of quantum correlations is shown
as a function of In N for several parameter values.
(This dependence of 1;(N) is given in fig. 4 under
the condition of developed chaos in the semi-clas-
sical approximation.) In fig. 5 the analogous behav-
ior of 1, is shown as a function of N. The results pre-
sented in figs. 4 and 5 show that in the case of
developed chaotic dynamics in the semi-classical
limit the dependence 7;(N) is logarithmic. In the last
case, the time scale 7, is found by numerical exper-
iment following ref. [20], by using the so-called “1%
criterion”. Namely, a quantum solution is calculated

PHYSICS LETTERS A

18 October 1993

quantum vector function D(7)=(c(7), 17 (1),
7 (7),) and its semi-classical analog Dy(7) are found.
Then, we calculate the function

s()=[lca(r)|+Ind () +19a(x) 11~}
X le(t)=ca(D) |+ n* (2)=nd (v)]
+ 177 (1) —na (o), (6.5)

which describes the relative difference between
quantum and semi-classical solutions. The time scale
1,(N) is obtained by setting §(t;)=const=10"2,
with §(0) =0. The number of atoms N is varied ac-
cording to the law: N=2" (n=2, .., 30). So, Npax
has the value N,,,, ~ 10°. Figure 6 shows the depen-
dence of 1; on N for regular dynamics in the semi-
classical approximation calculated according to the
“1% criterion™ for A=0.1, E=0, W(0)=0.3, o=1,
A=1. Finally, fig. 7 shows numerical results for the
time-dependence of the quantum correlation
function,

P(1)=|Pes (1) | +1Ps:(7) |

according to the 1/N scheme explained above and a +|P.+5-(17)] . (6.6)
a b
15 T T T T
20 I~ -
10 —~ = "
(5 [
10 -
5k .
0 ] 1 0 L 1
o} 10 20 0 10 20
Ln(N) Ln(N)
c d
T T
I T
20 ~ T 20 b= —J
& &
0 - 10 b= -~
0 1 l 0 J ]
0 10 20 0 10
Ln(N) Ln(N)

Fig. 4. Dependence 7,(N) on In N for developed chaotic dynamics in the semi-classical approximation calculated according to the *“1%
criterion™; =1, o=1; (a) E=0, A=0.2, W(0)=0.3; (b) E=0,1=0.3, W(0)=0.3; (¢c) E=0, 2=0.5, W(0)=0.3; (d) E=0.1,1=0.5,

w(0)=0.1.
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s T T 1 | |
20 - -
8- 4 ]
du 1 L] -
o - 5
51— — 0 -
SN 1
2 3 0 1 ! 1 I i
3l - 0 10 20 30 40 50 80
T
2 ~
1= —
0 L 300 T T T T T
[ 2500 5000
N
Fig. 5. Dependence 1, (N) for developed chaotic dynamics in the 200 I~ B
semi-classical approximation; E=0, W(0)=0.3,0=1,4d=1; (1) g
A=0.1; (2) A=0.2; (3) A=0.3; (4) A=2 (“1% criterion” was
used). 100 = B
0 1 1
0 10 20 L) 0 50 €0
40 T T T
Fig. 7. Time-dependence of quantum correlation function P(7);
30 - — (a) the case of developed chaos in the semi-classical limit: A=1,
ag=1,A=1; (b) the case of regular semi-classical dynamics: =3,
o=1,1=1.
& o -
the same form also appears for other quantum cor-
10} — relation functions.
0 L !
0 500 1000 1500

N

Fig. 6. Dependence t,(N) for regular dynamics in the semi-clas-
sical approximation calculated according to the “1% criterion™;
2=0.1, E=0, W(0)=0.3,0=1,4=1.

The function P(7) is shown in fig. 7a for the case of
developed semi-classical chaos, and in fig. 7b for the
case of regular semi-classical dynamics. As one can
see from fig. 7, when the semi-classical approxima-
tion exhibits developed chaos, the quantum corre-
lation function P(7) grows exponentially. When the
semi-classical dynamics is regular, the quantum cor-
relation function P(t) grows significantly slower,
roughly as an algebraic power law. Of course, in the
semi-classical approximation P ) (1) remains zero.
The dependence of P(t) shown in fig. 7 is typical;

7. Conclusion

Materials with strong concentrations of free rad-
icals may be suitable for experimental observation of
the quantum effects we discuss here, arising in tran-
sition from nondissipative semiclassical dynamics
[27-29]. In the solid state, these materials have
rather thin PMR lines, and the value of the g-factor
is close to 2. One of the best known of such materials
has chemical composition: a,a-diphenyl-B-picryl hy-
drazyl (DPPH). This material is used as a standard
for PMR and has a half-width at half-height 1AB~ 1
Oe. The value AB depends weakly on temperature,
and on the frequency at which the measurement is
made. For example, if we use as a solvent from which
a sample of DPPH is crystallized, then we have

305



Volume 181, number 4

4AB=1.450e, forf=300MHz, T=295K,
1AB=1.30e, forf=9.4GHz, T=295K,
{AB=1.30e, forf=300MHz, T=90K. (7.1)

The average distance between unpaired electrons in
DPPH ~10-7 cm corresponds to the density
po=10%' cm~3, The thin width and large density
guarantee a high level of PMR signal, allowing mea-
surements with as little as ~10~° g of DPPH. Note,
that in experiments even thinner PMR lines were ob-
served. For example, DPPH in a solution of carbon
bisulphide has }AB=0.65 Oe; and Picryl-n-amino-
car-bazyl [28] (whose structure is slightly different
from DPPH), has $AB=0.25 Oe which corresponds
to 3Af="70 kHz.

Now we give numerical estimates for the inter-
action constants 4, and 4 corresponding to a typical
PMR frequency f=1 GHz and po,=10?' cm~3. As-
sume kZ>>kZ, then approximately w?~c*k? and
L,~15 cm. Let us put L,~40 cm, then substituting
these values into (2.16) and assuming /,=3 cm, /,.=6
cm gives

Ao=0.1. (7.2)

Varying L,, for example, from L,=0.4 cm up to
L,=40 cm one could vary N from 7%x10?' cm~—3 up
to 7 1023 cm—3. The value 4, remains constant for
these variations. We estimate now the dimensionless
value of A for the parameter values chosen above.
From (3.5) we have

A= 1072b, (Oe) . (7.3)

So, as b, varies in the range bg=10"3-10? Oe, the
value A varies in the range A=10—3-1. Finally, for
the cooperative frequency in this case we have
w,=2nfA,~0.63 GHz. With these parameter values,
the conditions for developed semi-classical chaos are
by~ 10? Oe, 4~ w..

We envision the following experimental setup: In
the resonator an electromagnetic wave is injected
with nonresonant frequency 2. After a time interval
> Q/~nfin the resonator, oscillations with frequency
£ will be established. The frequency Q differs from
the resonant frequency w of spins, so the influence
of the external field on the spin system is small. At
the time moment f,> Q/nf the electron magnetiza-
tion is inclined from the z axis. After this, for times
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At~min{Q/nf, (rAf) "'} (7.4)

a dynamical process will be realized which corre-
sponds to Hamiltonian (3.7). We have also assumed
that temperature effects are small (%> T). Unfor-
tunately, this leads to rather strict limitations on the
temperature: at f=10° GHz the temperature should
be T<10-!' K.

So far, the choice of parameters has been restricted
to keep the constant A, in (2.16) sufficiently large
(4p~0.1). Relaxing this restriction allows the pos-
sibility of increasing the resonant frequency w. So
the dimension of the resonator and of the sample
could be reduced and the allowed temperature could
be increased. The decrease of A, in this case would
not preclude observation of quantum effects that vi-
olate the semi-classical approximation.
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